nahMh

N‑Heterocyclic Carbene Catalyzed Annulation of Enals to Aurone Analogs: Synthesis of Cyclopentene-Fused Spirobenzofuran-3-ones

K. C. Seetha Lakshmi,^{†,‡} Jagadeesh Krishnan,[†] C. R. Sinu,[†] Sunil Varughese,[†] and Vijay Nair^{*,†}

† Chemical Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-[NI](#page-2-0)IST), Trivandrum-695 019, India

‡ School of Chemical Sciences, Mahatma Gandhi University, Kottayam-686 560, India

S Supporting Information

[AB](#page-2-0)STRACT: [A nucleophili](#page-2-0)c heterocyclic carbene mediated homoenolate annulation of enals to aurone analogs leading to the efficient synthesis of cyclopentene-fused spirobenzofuran-3-ones is reported.

The renaissance of organocatalysis¹ in recent years has
rekindled interest in the design and execution of synthetic
protecols, extelling by N betapocaries, explores (NUC)² protocols catalyzed by N-heterocycl[ic](#page-2-0) carbenes $(NHC).$ ² Consequently a number of powerful methods for the construction of C−C and C−heteroatom bonds have emerge[d](#page-2-0) after the independent demonstration by Glorius and Bode that homoenolates generated from enals by NHCs underwent annulation to aldehydes to afford γ -butyrolactones.^{3,4} Subsequent investigations in different laboratories have revealed that homoenolates react with a wide range of electro[phi](#page-2-0)les to afford cyclopentenes^{5,6} and other cyclopentanoids,⁷ lactams,⁸ pyrazolidinones, 9 pyranones, 10 GABA analogs/precursors, 11 and assorted comp[oun](#page-2-0)ds.¹² Homoe[n](#page-3-0)olate reactions assiste[d](#page-3-0) by cooperative [Le](#page-3-0)wis acid/N[HC](#page-3-0) catalysis 13 and intramolecu[lar](#page-3-0) processes¹⁴ are also notew[ort](#page-3-0)hy. Catalytic transesterifications¹⁵ by NHCs as well as work utilizing uns[atu](#page-3-0)rated acyl azolium species a[re](#page-3-0) also worthy of mention.¹⁶

Ever since our first report^{17a} on the synthesis of spirolactones by the homoenolate annulation of [cyc](#page-3-0)lic 1,2-diones and isatins, several groups, including [our](#page-3-0) own, have contributed significantly to this area.^{13c,17} Very recently it was observed that homoenolate underwent facile annulation to benzofuran-2,3 diones to afford [bis-spi](#page-3-0)rofuranones.^{17e} The success of this reaction prompted us to examine the possibility of NHCcatalyzed enal annulation to au[ron](#page-3-0)e analogs with the assumption that such a process would yield cyclopentenefused spiro-benzofuran-3-ones. Impetus for our endeavor was also derived from the fact that a number of benzofuran and aurone derivatives are known to exhibit potent pharmacological effects.¹⁸ Quite coincidentally, while this manuscript was in preparation, Glorius and co-workers reported that aurones under[go](#page-3-0) homoenolate annulation to afford spiro-heterocycles.¹⁹ Contemporaneously, Zhao and co-workers reported a stereoselective synth[es](#page-3-0)is of benzofuran/indole-containing ε -lactones or spiro-heterocycles by the NHC-catalyzed annulation of enals with heterocyclic enones (Scheme 1).²

In a prototype experiment, 2-methoxycinnamaldehyde 1a, 2 benzoylidene benzofuran-3-one 2a, an[d](#page-3-0) IMesCl 3a (15 mol %)

Scheme 1. NHC-Catalyzed Annulation Reaction

were taken up in DCM. After the addition of DBU (20 mol %) the solution was allowed to stir at room temperature for about 24 h. The reaction mixture upon column chromatography afforded the product, cyclopentene-fused spiro-benzofuran-3 one 4a, in 32% yield (Scheme 2).

Scheme 2. Homoenolate Reaction of Enal with 2- Benzoylidene Benzofuran-3-one

The alkenyl proton of the cyclopentenyl core was observed at δ 6.29 in the $^1\rm \bar H$ NMR spectrum. The $^{13}\rm C$ resonance signal at δ 203.9 indicated the carbonyl carbon, supporting the IR absorption at 1709 cm[−]¹ . The spiro carbon was discernible from the signal at δ 94.8. All the other signals were in good agreement with the assigned structure. Conclusive evidence for

Received: October 30, 2014 Published: December 8, 2014 the structure and relative stereochemistry of 4a was ascertained from the single crystal X-ray data (Figure 1).

Figure 1. ORTEP diagram of 4a.

In view of the pleasing result, optimization studies in detail were determined to be next. For this, commonly available NHC precursors 3a−f were used for screening (Table 1). Among the

precursor (15 mol %), base (20 mol %) in 3 mL of solvent. ^bIsolated yield.

six catalysts investigated, imidazolium catalyst 3a exhibited high catalytic activity (Table 1, entry 1). In contrast to the NHC precursor 3a, imidazolinium catalyst 3b gave the product in 20% yield (Table 1, entry 2) whereas the benzimidazolium salt 3c failed to give the desired annulation product (Table 1, entry 3). While in the case of NHC precatalysts 3d and 3e, the product was isolated in lower yield (Table 1, entries 4 and 5).

After identifying NHC precursor 3a as the optimal catalyst, we investigated the influence of base, solvent, and temperature on the reaction (Table 1). Among the four bases tested, Et_3N

furnished the desired product in good yield (Table 1, entry 7). In comparison to Et_3N , 'BuOK also afforded the annulation product, but the yield of the product was only 25% (Table 1, entry 10). Later we examined several solvents such as DCM, THF, toluene, and $CH₃CN$. Among them THF was found to be the best solvent under room temperature conditions (Table 1, entry 12). When toluene was used as the solvent, the product was formed in lower yield, but in the case of CH_3CN no reaction was observed (Table 1, entries 13 and 14). Finally, when the reaction was carried out in THF at 66 °C the product was formed in optimal yield (Table 1, entry 15). Based on the above results, it was clear that the formation of cyclopentene fused spirobenzofuran-3-one in higher yield was facilitated by the combination of imidazolium carbene precursor $3a$ and $Et₃N$ in THF as the solvent under reflux conditions.

Subsequent studies were focused on the scope of the reaction. As shown in Table 2, the reaction works well for a

Table 2. Scope of the Reaction a

^aReactions were carried out with 1 (0.15 mmol), 2 (0.1 mmol), carbene precursor (15 mol %), Et₃N (20 mol %) in 3 mL of dry THF
(refluxed for 2 h). ^bIsolated yield.

range of enals having electron-withdrawing and -donating substituents. The reaction proceeds smoothly for different substituted 2-benzoylidene benzofuran-3-ones. In all the cases annulation products were obtained in moderate to good yields. Of note, the reaction of enal carrying a heteroaryl group proceeds effectively to give the product in 61% yield (Table 2, entry 4).

The scope of the reaction was further explored by employing β -alkyl substituted enals in the reaction. It was found that the method was successful in the synthesis of alkyl substituted cyclopentene fused spirobenzofuran-3-ones in good yields (Figure 2).

In view of the above results, it was of interest to study the reaction [o](#page-2-0)f dienal 1l with 2-benzoylidene benzofuran-3-one 2e under the optimal reaction conditions. Delightfully, 4,6,7 trimethyl-4′- phenyl-2′- $((E)$ -prop-1-en-1-yl)-3H-spiro[benzo-

Figure 2. Annulation products obtained from aliphatic enals.

furan-2,1′-cyclopent[3]en]-3-one 4s, endowed with an alkenyl chain, was obtained in 70% yield (Scheme 3).

Scheme 3. Reaction of Dienal with 2-Benzoylidene Benzofuran-3-one

A mechanistic rationalization for the formation of spirocyclopentene is as follows. The homoenolate I formed initially by the reaction of IMes with enal undergoes conjugate addition to 2-benzoylidene benzofuran-3-one and consequent to a proton transfer generates the enolate II which then participates in an intramolecular aldol reaction to afford the cyclopentane carbinolate III. The latter undergoes lactone formation accompanied by the ejection of IMes. The β -lactone V undergoes a retro- $[2 + 2]$ process to yield the cyclopentene fused spiro-benzofuran-3-one VI with the loss of carbon dioxide (Scheme 4). It may be mentioned that the sequence of events

Scheme 4. Mechanistic Rationale

presented here is analogous to the one that was established experimentally^{5a} and theoretically²¹ for the 1,3,4-triaryl cyclopentene synthesis reported earlier.

In conclusion we have develo[pe](#page-3-0)d a novel NHC-catalyzed homoenolate annulation to 2-aroylidene benzofuran-3-ones leading to the synthesis of cyclopentene-fused spirobenzofuran-3-ones. It is noteworthy that a wide range of natural products and biologically active derivatives contain a 2-spirocyclic benzofuran-3-one framework.²² It is conceivable that the protocol outlined herein may be applicable to the synthesis of biologically relevant molec[ule](#page-3-0)s.

■ ASSOCIATED CONTENT

8 Supporting Information

Experimental procedures and spectral data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: vijaynair_2001@yahoo.com.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Department of Science and Technology (DST), New Delhi, for Raja Ramanna Fellowship. We also thank the Council of Scientific and Industrial Research (CSIR) and the University Grants Commission (UGC) New Delhi, for financial assistance. This paper is dedicated in respectful commemoration of the late Professor Ramachandra Hari Sahasrabudhey.

■ REFERENCES

(1) For selected reviews, see: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (b) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. (c) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (d) MacMillan, D. W. C. Nature 2008, 455, 304. (e) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638. (f) Bertelsen, S.; Jorgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. (g) Marques-Lopez, E.; Herrera, R. P.; Christmann, M. Nat. Prod. Rep. 2010, 27, 1138. (h) Alemán, J.; Cabrera, S. Chem. Soc. Rev. 2012, 42, 774.

(2) For reviews on NHC catalysis, see: (a) Nair, V.; Bindu, S.; Vellalath, S. Angew. Chem., Int. Ed. 2004, 43, 5130. (b) Christmann, M. Angew. Chem., Int. Ed. 2005, 44, 2632. (c) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506. (d) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. (e) Marion, N.; Diez Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. (f) Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691. (g) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55. (h) Moore, J. L.; Rovis, T. Top. Curr. Chem. 2010, 291, 77. (i) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Vellalath, S. Chem. Soc. Rev. 2011, 40, 5336. (j) Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res. 2011, 44, 1182. (k) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314. (l) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. (m) Ryan, S. J.; Candish, L.; Lupton, D. W. Chem. Soc. Rev. 2013, 42, 4906. (n) Chen, X.-Y.; Ye, S. Org. Biomol. Chem. 2013, 11, 7991. (o) Chen, X.-Y; Ye, S. Synlett 2013, 24, 1614. (p) Mahatthananchai, J.; Bode, J. W. Acc. Chem. Res. 2014, 47, 696. (q) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.

(3) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. (4) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370.

(5) (a) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736. (b) Nair, V.; Vellalath, S.; Babu, B. P.; Varghese, V.; Paul, R. R.; Suresh, E. Org. Biomol. Chem. 2010, 8, 4861. (c) Nair, V.; Paul, R. R.; Padmaja, D. V. M; Aiswarya, N.; Sinu, C. R.; Jose, A. Tetrahedron 2011, 67, 9885. (d) Paul, R. R.; Seetha Lakshmi, K. C.; Suresh, E.; Nair, V. Tetrahedron Lett. 2013, 54, 2046. (e) Sinu, C. R.; Padmaja, D. V. M; Jini, P.; Seetha Lakshmi, K. C.; Nair, V. Synlett 2013, 24, 1671.

(6) (a) Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098. (b) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc. 2007, 129, 3520. (c) Chiang, P.-C.; Rommel, M.; Bode, J. W. J. Am. Chem. Soc. 2009, 131, 8714. (d) Cardinal-David, B.; Raup, D. E. A.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 5345. (e) Cohen, D. T.; Eichman, C. C.; Phillips, E. M.;

Organic Letters Letters **Letters Letter Letter Letter Letter Letter Letter Letters**

Zarefsky, E. R.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 7309. (f) Leong, W. W. Y.; Chen, X.; Chi, Y. R. Green Chem. 2013, 15, 1505. (7) (a) Nair, V.; Babu, B. P.; Vellalath, S.; Varghese, V.; Raveendran,

A. E.; Suresh, E. Org. Lett. 2009, 11, 2507. (b) Kaeobamrung, J.; Bode, J. W. Org. Lett. 2009, 11, 677. (c) Enders, D.; Grossmann, A.; Huang, H.; Raabe, G. Eur. J. Org. Chem. 2011, 4298.

(8) (a) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131. (b) Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat. Chem. 2010, 2, 766. (c) Kravina, A. G.; Mahatthananchai, J.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 9433. (d) Zhang, B.; Feng, P.; Sun, L.-H.; Cui, Y.; Ye, S.; Jiao, N. Chem.-Eur. J. 2012, 18, 9198.

(9) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2740. (10) (a) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176. (b) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J. W. J. Am. Chem. Soc. 2010, 132, 8810. (c) Nair, V.; Paul, R. R.; Seetha Lakshmi, K. C.; Menon, R. S.; Jose, A.; Sinu, C. R. Tetrahedron Lett. 2011, 52, 5992. (d) Fang, X.; Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2011, 50, 1910. (e) Yetra, S. R.; Kaicharla, T.; Kunte, S. S.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2013, 15, 5202. (f) Albanese, D. C. M.; Gaggero, N. Eur. J. Org. Chem. 2014, 5631.

(11) Nair, V.; Varghese, V.; Babu, B. P.; Sinu, C. R.; Suresh, E. Org. Biomol. Chem. 2010, 8, 761.

(12) (a) White, N.; DiRocco, D.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 8504. (b) Chen, X.-Y.; Sun, L.-H.; Ye, S. Chem.—Eur. J. 2013, 19, 4441. (c) Chen, X.; Fang, X.; Chi, Y. R. Chem. Sci. 2013, 4, 2613. (d) Bhunia, A.; Patra, A.; Puranik, V. G.; Biju, A. T. Org. Lett. 2013, 15, 1756. (e) Jang, K. P.; Hutson, G. E.; Johnston, R. C.; McCusker, E. O.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 76.

(13) (a) Zhao, X.; DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2011, 133, 12466. (b) Hirano, K.; Piel, I.; Glorius, F. Chem. Lett. 2011, 40, 786. (c) Dugal-Tessier, J.; O'Bryan, E. A.; Schroeder, T. B. H.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 4963.

(14) (a) Struble, J.; Bode, J. W. Tetrahedron 2009, 65, 4957. (b) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51, 11686. (c) Sinu, C. R.; Padmaja, D. V. M; Ranjini, U. P.; Seetha Lakshmi, K. C.; Suresh, E.; Nair, V. Org. Lett. 2013, 15, 68.

(15) (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583. (b) Nyce, G. W.; Lamboy, J. A.; Connor, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587. (c) Reynolds, N.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406. (d) Samanta, R. C.; Sarkar, S. D.; Frö hlich, R.; Grimme, S.; Studer, A. Chem. Sci. 2013, 4, 2177.

(16) (a) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2011, 133, 4694. (b) Vora, H. U.; Wheeler, P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617. (c) Wang, G.; Chen, X.; Miao, G.; Yao, W.; Ma, C. J. Org. Chem. 2013, 78, 6223. (d) Cheng, J.; Huang, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2013, 52, 8592. (e) Mondal, S.; Yetra, S. R.; Patra, A.; Kunte, S. S.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2014, 50, 14539.

(17) (a) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett. 2006, 8, 507. (b) Nair, V.; Babu, B. P.; Vellalath, S.; Suresh, E. Chem. Commun. 2008, 747. (c) Sun, L.-H.; Shen, L.-T.; Ye, S. Chem. Commun. 2011, 10136. (d) Wang, Z.-D.; Wang, F.; Li, X.; Cheng, J.-P. Org. Biomol. Chem. 2013, 11, 5634. (e) Seetha Lakshmi, K. C.; Paul, R. R.; Suresh, E.; Nair, V. Synlett 2014, 25, 0853.

(18) (a) Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A. M.; Perrier, E.; Boumendjel, A. J. Med. Chem. 2006, 49, 329. (b) Ge, H. M.; Zhu, C. H.; Shi, D. H.; Zhang, L. D.; Xie, D. Q.; Yang, J.; Ng, S. W.; Tan, R. X. Chem.–Eur. J. 2008, 14, 376. (c) Pérez-Fons, L.; Garzón, M. T.; Micol, V. J. Agric. Food Chem. 2010, 58, 161. (d) Pertino, M. W.; Theoduloz, C.; Rodríguez, J. A.; Lazo, V. J. Nat. Prod. 2010, 73, 639. (e) Haudecoeur, R.; Ahmed-Belkacem, A.; Yi, W.; Fortune, F.; Brillet, R.; Belle, C.; Nicolle, E.; Pallier, C.; Pawlotsky, J. M.; Boumendjel, A. J. Med. Chem. 2011, 54, 5395.

(19) Guo, C.; Schedler, M.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2014, 53, 10232.

(20) Wang, M.; Rong, Z.-Q.; Zhao, Y. Chem. Commun. 2014, 50, 15309.

(21) (a) Domingo, L. R.; Zaragozá, R. J.; Arnó, M. Org. Biomol. Chem. 2010, 8, 4884. (b) Verma, P.; Patni, P. A.; Sunoj, R. B. J. Org. Chem. 2011, 76, 5606.

(22) (a) Braun, M.; Alinejad, A. H.; Lacroix, B. F. D.; Alvarez, B. H.; Fischer, G. Molecules 2008, 13, 995. (b) Rønnest, M. H.; Raab, M. S.; Anderhub, S.; Boesen, S.; Krämer, A.; Larsen, T. O.; Clausen, M. H. J. Med. Chem. 2012, 55, 652 and references cited therein.